Logarithmic Growth of Systole of Arithmetic Riemann Surfaces along Congruence Subgroups

نویسنده

  • MIKHAIL G. KATZ
چکیده

P. Buser and P. Sarnak constructed Riemann surfaces whose systole behaves logarithmically in the genus. The Fuchsian groups in their examples are principal congruence subgroups of a fixed arithmetic group with rational trace field. We generalize their construction to principal congruence subgroups of arbitrary arithmetic surfaces. The key tool is a new trace estimate valid for an arbitrary ideal in a quaternion algebra. We obtain a particularly sharp bound for Hurwitz surfaces. Similar results are obtained for the systole of hyperbolic 3-manifolds, relative to their simplicial volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence Subgroups in the Hurwitz Quaternion Order

We clarify the explicit structure of the Hurwitz quaternion order, which is of fundamental importance in Riemann surface theory and systolic geometry. We present some properties of the associated congruence subgroups. Namely, we show that a Hurwitz group defined by a congruence subgroup associated with an odd ideal, is necessarily defined by a principal congruence subgroup. All such Hurwitz gro...

متن کامل

Bolza Quaternion Order and Asymptotics of Systoles Along Congruence Subgroups

We give a detailed description of the arithmetic Fuchsian group of the Bolza surface and the associated quaternion order. This description enables us to show that the corresponding principal congruence covers satisfy the bound sys(X) > 4 3 log g(X) on the systole, where g is the genus. We also exhibit the Bolza group as a congruence subgroup, and calculate out a few examples of “Bolza twins” (u...

متن کامل

Congruence subgroups of the minimal covolume arithmetic Kleinian group

We identify the normal subgroups of the orientation preserving subgroup [3, 5, 3] of the Coxeter group [3, 5, 3], with the factor group isomorphic to PSL2(Fq) with particular congruence subgroups of an arithmetic subgroup of PSL2(C) derived from a quaternion algebra over a quartic field. 1 Motivation – Hurwitz groups and HurwitzMacbeath surfaces It is a well known fact that up to isomorphy, the...

متن کامل

Genera of Arithmetic Fuchsian Groups

Introduction. The fundamental invariant of a Riemann surface is its genus. In this paper, using arithmetical means, we calculate the genus of certain Riemann surfaces defined by unit groups in quaternion algebras. First we recall a well-known general construction of Riemann surfaces. The group SL2(R) acts on the upper half-plane H by Möbius transformations. If G is a Fuchsian group, that is, a ...

متن کامل

An Arithmetic Formula for Certain Coefficients of the Euler Product of Hecke Polynomials

Abstract. In 1997 the author [11] found a criterion for the Riemann hypothesis for the Riemann zeta function, involving the nonnegativity of certain coefficients associated with the Riemann zeta function. In 1999 Bombieri and Lagarias [2] obtained an arithmetic formula for these coefficients using the “explicit formula” of prime number theory. In this paper, the author obtains an arithmetic for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005